Factor 48m - 80n.
16mn(3m - 5n)
16(5n - 3m)
16(3m - 5n)

Question

Asked 1/29/2013 9:32:27 AM

Updated 6/10/2014 11:32:40 PM

1 Answer/Comment

s

Solution

1. Find the lowest common denominator for both numerical coefficient

48= 2.2.2.2.3

80=2.2.2.2. 5

LCD= 2.2.2.2

LCD = 16

2. Perform the operation: 48m - 80n divide both by 16

*48m/16 = 3m

*-80/16 = -5n

3. answer= 16(3m - 5n)

cjabward|Points 550|

LoveSolo|Points 80|

ianbearpig|Points 50|

Expert answered|andrewpallarca|Points 18976|

Question

Asked 1/29/2013 9:32:27 AM

Updated 6/10/2014 11:32:40 PM

1 Answer/Comment

Rating

3

3y^2 - 4y = y(3y - 4)

Added 6/10/2014 11:32:40 PM

This answer has been confirmed as correct and helpful.

Confirmed by jeifunk [6/10/2014 11:39:41 PM]

Select the correct product.
(2x + 9)(x + 1)
2x2+ 11x+ 9
3x2+ 11x+ 9
2x2- 7x+ 9
2x2+ 11x+ 10 User: (2x + 9)(x + 1) **Weegy:** If h(x) = 5 for the function h(x) = 2x + 1, then x equals 2. h(2) = 2(2) + 1 = 5. The answer is 2.
**User:** 36m5n5 ÷ (12m3)
**Weegy:** 36m5n5 ? (12m3) = 3m2n5 **User:** 7 - 3[(n3 + 8n) ÷ (-n) + 9n2] **Weegy:** 3-3 = 0 (More)

Question

Updated 5/29/2014 9:44:25 AM

2 Answers/Comments

(2x + 9)(x + 1)

= 2x^2 + 2x + 9x + 9

= 2x^2 + 11x + 9

= 2x^2 + 2x + 9x + 9

= 2x^2 + 11x + 9

Added 5/29/2014 9:42:31 AM

This answer has been confirmed as correct and helpful.

Confirmed by jeifunk [5/29/2014 9:55:21 AM]

Simplify 5 + 2{x - 4[3x + 7(2 - x)]}. **Weegy:** (3x-2) squared is 9x^2 - 12x + 4. **User:** (7q - 5)(7q + 5) **Weegy:** 3-3 = 0 **User:** Simplify b(a + b) - a(a - b).
a2+ 2ab+b2
a2- 2ab+b2
-a2+ 2ab+b2
-a2- 2ab-b2 **Weegy:** (c)-a2+ 2ab+b2 **User:** Find the quotient.
(35n3 - 30n2 + 25n) ÷ (-5n)
-7n2- 6n + 5
-7n2- 6n - 5
-7n2+ 6n - 5 **Weegy:** the quotient is -7n2 + 6n - 5. **User:** Find the quotient.
y9 ÷ y3
y3
y6
y9
y27 **Weegy:** y^9 ? y^3 = (b)y^6 **User:** Find the product.
(6a + b)2
12a2+ ab + b2
36a2+ ab + 36b2
36a2+ 12ab + b2
36a2+ b2 **Weegy:** (c).36a2+ 12ab + b2 **User:** Find the product.
-mnp(3m - 5n + 7p)
-3m +5n2+7p2
3mnp- 5mnp+ 7mnp
-3mnp+ 5mnp- 7mnp
-3m2np+ 5mn2p- 7mnp2 **Weegy:** (d)-3m2np+ 5mn2p- 7mnp2
**User:** Multiply (6z2 - 4z + 1)(8 - 3z).
18z3- 60z2+ 35z- 8
48z2- 18z+ 8
6z2- 7z+ 9
-18z3+ 60z2- 35z+ 8 **Weegy:** 48z2 -34z+8-18z3-12z2-3z **User:** Find the product.
3y2z(2y2z + 4yz - y + z)
4y6z2+ 13y3z12- 3y2z2- 3yz
6y4z2+ 12y3z2- 3y3z+ 3y2z2
6y2z4- 12y2z3+ 3yz3- 3y2z2
3y4z2+ 3y3z2- 6y3z- 4
**Weegy:** (b)6y4z2+ 12y3z2- 3y3z+ 3y2z2 is the answer. **User:** Find the product.
(2p + 7)(3p - 9)
6p2- 3p- 63
6p2+ 3p- 63
6p2+ 39p- 63
6p2+ 3p- 2 **Weegy:** (c)6p2+ 39p- 63 **User:** Find the prime factorization of 210.
2 X 3 X 5 X 7
2 X 3 X 35
2 X 7 X 15 **Weegy:** a.2 X 3 X 5 X 7 **User:** Find the GCF of the given polynomial.
16a4b4 + 32a3b5 - 48a2b6
**Weegy:** 16a2b4 **User:** Find the GCF of the given polynomial.
8x6y5 - 3x8y3
**Weegy:** The polynomial of 8x6y5 - 3x8y3= x^6y^3
**User:** Find the GCF of the following monomials.
-50m4n7 and 40m2n10
**Weegy:** 10m2n7 **User:** Find the GCF of 56 and 46.
2
8
10 **Weegy:** 2 **User:** Find the GCF of -10c2d and 15cd2.
-5c²d²
-5cd
5cd **Weegy:** c.5cd **User:** Find the GCF of the following literal terms.
m7n4p3 and mn12p5
**Weegy:** The GCF=
x x z z. **User:** Select the GCF of these numbers.
48 and 60
22·3
2· 112
32
23· 5
13· 193·232 **Weegy:** (a)22?3 **User:** Find the GCF of 38m and 57n.
9mn
19mn
19 **Weegy:** c.19 . the GCF of ... (More)

Question

Expert Answered

Updated 6/8/2014 11:53:38 AM

2 Answers/Comments

5 + 2{x - 4[3x + 7(2 - x)]}

= 5 + 2{x - 4[3x + 14 - 7x]}

= 5 + 2{x - 4[-4x + 14]}

= 5 + 2{x + 16x - 56}

= 5 + 2{17x - 56}

= 5 + 34x - 112

= 34x - 107

= 5 + 2{x - 4[3x + 14 - 7x]}

= 5 + 2{x - 4[-4x + 14]}

= 5 + 2{x + 16x - 56}

= 5 + 2{17x - 56}

= 5 + 34x - 112

= 34x - 107

Added 6/8/2014 11:53:03 AM

This answer has been confirmed as correct and helpful.

(7q - 5)(7q + 5)

= 49q^2 + 35q - 35q - 25

= 49q^2 - 25

= 49q^2 + 35q - 35q - 25

= 49q^2 - 25

Added 6/8/2014 11:53:38 AM

This answer has been confirmed as correct and helpful.

31,989,133

questions answered

There are no comments.