weegy
Answer
Search
More
Help
Account
Feed
Signup
Log In
Question and answer
What is the midpoint of a segment whose endpoints are (-12, 8) and the origin? A) (0, 0) B) (4, 6) C) (-6, 4) D) (6, -4)
Log in for more information.
Question
Asked 10/25/2010 4:04:39 PM
Updated 7/27/2014 1:12:11 PM
1 Answer/Comment
Flagged by
jerry06
[7/27/2014 1:12:11 PM]
f
Get an answer
Search for an answer or ask Weegy.
What is the midpoint of a segment whose endpoints are (-12, 8) and the origin? A) (0, 0) B) (4, 6) C) (-6, 4) D) (6, -4)
Original conversation
User:
What is the midpoint of a segment whose endpoints are (-12, 8) and the origin? A) (0, 0) B) (4, 6) C) (-6, 4) D) (6, -4)
Log in for more information.
Question
Asked 10/25/2010 4:04:39 PM
Updated 7/27/2014 1:12:11 PM
1 Answer/Comment
Flagged by
jerry06
[7/27/2014 1:12:11 PM]
New answers
Rating
8
jerry06
The midpoint of a segment whose endpoints are (-12, 8) and the origin is (-6, 4). M = [(-12+0)/2, (8+0)/2]; M = (-12/2, 8/2); M = (-6, 4)
Log in for more information.
Added 7/27/2014 1:12:08 PM
This answer has been confirmed as correct and helpful.
Confirmed by
yumdrea
[7/27/2014 1:16:14 PM]
Comments
There are no comments.
Add an answer or comment
Log in
or
sign up
first.
Questions asked by the same visitor
What is the distance between the points (-19, -4) and (11, 12)? A) 30 B) 34 C) 48 D) 17
(More)
Question
Updated 7/14/2014 2:59:26 AM
1 Answer/Comment
8
andrewpallarca
M
The distance between the points (-19, -4) and (11, 12) is 34.
Added 7/14/2014 2:59:26 AM
This answer has been confirmed as correct and helpful.
What is the midpoint of a segment whose endpoints are (4, 0) and (0, -2)? A) (2, -1) B) (4, 2) C) (2, -4) D) (1, -2)
Weegy:
(More)
Question
Updated 7/14/2014 2:58:03 AM
3 Answers/Comments
KeenResearcher
A) (2, -1)
Added 10/25/2010 4:35:57 PM
allybee
Added 10/25/2010 4:48:00 PM
8
andrewpallarca
M
The midpoint of a segment whose endpoints are (4, 0) and (0, -2) is (2, -1).
((x1+x2)/2, (y1+y2)/2)
= ((4 + 0)/2, (0 - 2)/2)
= (4/2, -2/2)
= (2, -1)
Added 7/14/2014 2:57:59 AM
This answer has been confirmed as correct and helpful.
What is the midpoint of a segment whose endpoints are (3, 7) and (7, 3)? A) (2, -2) B) (5, -5) C) (2, 2) D) (5, 5)
Weegy:
D) (5, 5) If satisfied with the response, please click "Good"
(More)
Question
Expert Answered
Updated 7/14/2014 2:56:20 AM
1 Answer/Comment
8
andrewpallarca
M
The \midpoint of a segment whose endpoints are (3, 7) and (7, 3) is (5, 5).
((x1+x2)/2, (y1+y2)/2)
= ((3 + 7)/2, (7 + 3)/2)
= (10/2, 10/2)
= (5, 5)
Added 7/14/2014 2:56:20 AM
This answer has been confirmed as correct and helpful.
See all questions asked by the same visitor
39,575,753
questions answered
GET
Answers.
GET THE APP.
weegy*
*
Get answers from Weegy and a team of
really smart
live experts.
Popular Conversations
S
hare your worl
d.
W I N D O W P A N E
FROM THE CREATORS OF
weegy
WINDOWPANE is the live-streaming app for sharing your life as it happens, without filters, editing, or anything fake.
Because you're already amazing.
Connect with others, with spontaneous photos and videos, and random live-streaming. Post thoughts, events, experiences, and milestones, as you travel along the path that is uniquely yours.
Share your world.
Top Ranked Experts *
Order
Points
Ratings
Comments
Invitations
AndrewKibe
S
L
P
1
Points
82
[Total
724
]
Ratings
0
Comments
82
Invitations
0
Offline
Bernette
S
L
P
Points
46
[Total
4438
]
Ratings
0
Comments
46
Invitations
0
Offline
Hushai
S
Points
22
[Total
23
]
Ratings
1
Comments
2
Invitations
1
Offline
Metha
S
Points
13
[Total
13
]
Ratings
0
Comments
13
Invitations
0
Offline
Manay
S
Points
10
[Total
41
]
Ratings
0
Comments
0
Invitations
1
Offline
Jamesband
S
L
Points
10
[Total
111
]
Ratings
0
Comments
0
Invitations
1
Offline
HARLEY61
S
L
1
1
1
1
Points
10
[Total
2439
]
Ratings
1
Comments
0
Invitations
0
Online
JARR
S
L
R
Points
7
[Total
369
]
Ratings
0
Comments
7
Invitations
0
Offline
lucky1515
S
Points
1
[Total
1
]
Ratings
0
Comments
1
Invitations
0
Offline
JERSI
S
L
P
P
Points
1
[Total
3334
]
Ratings
0
Comments
1
Invitations
0
Offline
Find»
* Excludes moderators and previous
winners
(
Include
)
Home
|
Contact
|
Blog
|
About
|
Terms
|
Privacy
| ©
Purple Inc.