Question not found

Not a good answer? Get an answer now. (Free)

Rating

There are no new answers.

can you tell me about logarithm functions **Weegy:** The logarithmic function is defined as the inverse of the exponential function.
(More)

Question

Expert Answered

Updated 9/9/2012 6:31:39 AM

1 Answer/Comment

"The logarithm of a number is the exponent by which another fixed value, the base, has to be raised to produce that number. For example, the logarithm of 1000 to base 10 is 3, because 1000 is 10 to the power 3: 1000 = 10?×?10?×?10 = 103. More generally, if x = by, then y is the logarithm of x to base b, and is written y = logb(x), so log10(1000) = 3.

Logarithms were introduced by John Napier in the early 17th century as a means to simplify calculations. They were rapidly adopted by navigators, scientists, engineers, and others to perform computations more easily, using slide rules and logarithm tables. Tedious multi-digit multiplication steps can be replaced by table look-ups and simpler addition because of the fact—important in its own right—that the logarithm of a product is the sum of the logarithms of the factors:

The present-day notion of logarithms comes from Leonhard Euler, who connected them to the exponential function in the 18th century.

The logarithm to base b = 10 is called the common logarithm and has many applications in science and engineering. The natural logarithm has the constant e (˜ 2.718) as its base; its use is widespread in pure mathematics, especially calculus. The binary logarithm uses base b = 2 and is prominent in computer science.

Logarithmic scales reduce wide-ranging quantities to smaller scopes. For example, the decibel is a logarithmic unit quantifying sound pressure and voltage ratios. In chemistry, pH and pOH are logarithmic measures for the acidity of an aqueous solution. Logarithms are commonplace in scientific formulae, and in measurements of the complexity of algorithms and of geometric objects called fractals. They describe musical intervals, appear in formulae counting prime numbers, inform some models in psychophysics, and can aid in forensic accounting.

In the same way as the logarithm reverses exponentiation, the complex logarithm is the inverse function of the exponential function applied to complex numbers. The discrete logarithm is another variant; it has applications in public-key cryptography."

To know more about this please visit the link

Logarithms were introduced by John Napier in the early 17th century as a means to simplify calculations. They were rapidly adopted by navigators, scientists, engineers, and others to perform computations more easily, using slide rules and logarithm tables. Tedious multi-digit multiplication steps can be replaced by table look-ups and simpler addition because of the fact—important in its own right—that the logarithm of a product is the sum of the logarithms of the factors:

The present-day notion of logarithms comes from Leonhard Euler, who connected them to the exponential function in the 18th century.

The logarithm to base b = 10 is called the common logarithm and has many applications in science and engineering. The natural logarithm has the constant e (˜ 2.718) as its base; its use is widespread in pure mathematics, especially calculus. The binary logarithm uses base b = 2 and is prominent in computer science.

Logarithmic scales reduce wide-ranging quantities to smaller scopes. For example, the decibel is a logarithmic unit quantifying sound pressure and voltage ratios. In chemistry, pH and pOH are logarithmic measures for the acidity of an aqueous solution. Logarithms are commonplace in scientific formulae, and in measurements of the complexity of algorithms and of geometric objects called fractals. They describe musical intervals, appear in formulae counting prime numbers, inform some models in psychophysics, and can aid in forensic accounting.

In the same way as the logarithm reverses exponentiation, the complex logarithm is the inverse function of the exponential function applied to complex numbers. The discrete logarithm is another variant; it has applications in public-key cryptography."

To know more about this please visit the link

Added 9/9/2012 6:31:39 AM

what can you tell me about the compound interest formula in math **Weegy:** What kind of formula about math would you want to me to tell you? (More)

Question

Expert Answered

Updated 9/9/2012 1:24:59 PM

1 Answer/Comment

The compound interest formula is:

A=P(1+r/n)^nt

P = principal amount (the initial amount you borrow or deposit)

r = annual rate of interest (as a decimal)

t = number of years the amount is deposited or borrowed for.

A = amount of money accumulated after n years, including interest.

n = number of times the interest is compounded per year

A=P(1+r/n)^nt

P = principal amount (the initial amount you borrow or deposit)

r = annual rate of interest (as a decimal)

t = number of years the amount is deposited or borrowed for.

A = amount of money accumulated after n years, including interest.

n = number of times the interest is compounded per year

Added 9/9/2012 1:25:00 PM

This answer has been added to the Weegy Knowledgebase

27,388,022 questions answered

There are no comments.